

Richard Zacarías Sanz Durand

Avaliação da Microestrutura e Propriedades Mecânicas da Soldagem Circunferencial do Aço API 5L X80 por Processos de Soldagem Semi-Automáticos com Proteção Gasosa

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Ciência dos Materiais e Metalurgia da PUC-Rio.

Orientador: Ivani de Souza Bott

Rio de Janeiro Abril de 2007

Richard Zacarías Sanz Durand

Avaliação da Microestrutura e Propriedades Mecânicas da Soldagem Circunferencial do Aço API 5L X80 por Processos de Soldagem Semi-Automáticos com Proteção Gasosa

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Ciência dos Materiais e Metalurgia da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Ivani de Souza Bott Orientador Departamento de Ciência dos Materiais e Metalurgia – PUC-Rio

Prof. Luis Felipe Guimarães de Souza Centro Federal de Educação Tec. Celso Suckow da Fonseca – CEFET/RJ

> Dra. Annelise Zeemann do Pinho TECMETAL – Consultoria em Materiais Ltda

Prof. Américo Scotti Universidade Federal de Uberlandia - FEM

> Dr. Eduardo Hippert Jr CENPES PETROBRAS

Professor José Eugenio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 13 de abril de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Richard Zacarías Sanz Durand

Graduou-se em Engenharia Mecânica na Universidade Nacional de Ingeniería - UNI (Lima, Perú) em 2001

Ficha Catalográfica

Sanz Durand, Richard Zacarías

Avaliação da microestrutura e propriedades mecânicas da soldagem circunferencial do aço API 5L X80 por processos de soldagem semi-automáticos com proteção gasosa / Richard Zacarías Sanz Durand ; orientador: Ivani de Souza Bott. – 2007.

143 f. : il. ; 30 cm

Dissertação (Mestrado em Ciência dos Materiais e Metalurgia)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2006.

Incluí referências bibliográficas.

1. Ciência dos materiais e metalurgia – Teses. 2. Soldagem circunferencial. 3. API 5L X80. 4. GMAW. 5. FCAW-G. 6. Ensaio Charpy V. I. Bott, Ivani de Souza. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Ciência dos Materiais e Metalurgia. III. Título.

CDD: 669

PUC-Rio - Certificação Digital Nº 0421070/CA

Dedicado a minha mãe Ana María Durand Cano e a minha irmã Pamela pelo apoio, estímulo e confiança em todo momento.

Agradecimentos

À Deus quem sempre faz parte e é guia em cada decisão na minha vida.

A minha mãe quem sempre me apóia, anima e aconselha em todo momento, e a minha querida irmã Pamela quem sempre me anima em todo momento.

À professora Ivani Bott, por seus ensinamentos, paciência e parceria no desenvolvimento deste trabalho.

Ao Gilmar Zacca, Eduardo Hippert e Marcy Saturno, equipe de trabalho do Projeto X80 – Petrobras, pelo apoio técnico e logístico durante e depois das soldagens.

Ao Adriano Castanheira, Nielson Reis e Rafael Silva, equipe de trabalho do Projeto X80 – PUC-Rio, pelo apoio brindado no acompanhamento das soldas e preparação das amostras.

Ao Ronaldo Fernandez e Sidenei de Moares, inspetores da CCDL, pelo apoio no acompanhamento das soldagens. E aos soldadores Marcos Henrique de Vasconcelos e Moises Alves da Silva, pela execução da soldagem.

À CONFAB e Lincoln Electric pelo fornecimento dos tubos e, máquinas de soldagem e consumíveis, respectivamente.

À CCDL por brindar o uso das suas instalações.

À CNPq, FAPERJ e Petrobras, pelo suporte econômico durante os estudos do mestrado.

A todos os professores do DCMM, pelos ensinamentos.

Aos colegas Miguel Alvarez e Percy Saavedra, pela parceria e convívio durante a realização do presente trabalho.

A todos os amigos e familiares, que me apoiaram e estimularam na culminação desta etapa da minha vida.

Richard Zacarías Sanz Durand; Ivani de Souza Bott. Avaliação da Microestrutura e Propriedades Mecânicas da Soldagem Circunferencial do Aço API 5L X80 por Processos de Soldagem Semi-Automáticos com Proteção Gasosa. Rio de Janeiro, 2007. 143p. Dissertação de Mestrado - Departamento de Ciência dos Materiais e Metalurgia, Pontifícia Universidade Católica do Rio de Janeiro.

O presente trabalho avalia a evolução da microestrutura e as propriedades mecânicas devido à influência do aporte de calor exercido por um procedimento de soldagem que utilizou sequencialmente dois processos de soldagem sobre um tubo de aço API 5L X80, fabricado pelo processo UOE, de um aço produzido por laminação controlada sem resfriamento acelerado. A soldagem foi realizada em um tubo de 20" de diâmetro nominal e 3/4" de espessura, fixado na posição horizontal simulando condições de campo, usando o processo MAG de curtocircuito de corrente controlada com gás de proteção CO₂ (100%) para o passe de raiz e o processo por Arame Tubular com proteção gasosa Ar - CO2 (80% -20%) para os demais passes. As propriedades mecânicas foram avaliadas segundo os ensaios mecânicos exigidos na norma API 1104, além dos ensaios de microdureza Vickers e de impacto Charpy V. As mudanças microestruturais na Zona Afetada Termicamente e Material de Solda foram avaliadas por microscopia eletrônica de varredura (MEV) e microscopia óptica. A avaliação mecânica segundo a norma API 1104 foi reprovada, onde os resultados dos ensaios de tração e Nick-Break foram aceitos e o ensaio de dobramento lateral um corpo-de-prova apresentou uma trinca superior ao comprimento máximo aceitável. Os resultados da microdureza foram aceitáveis e o resultado do impacto Charpy V, segundo a norma DNV-OS-F101, para a temperatura de 0 °C foi insatisfatório na região do metal de solda dos passes de acabamento. A região da ZTA apresentou maior energia de impacto quando comparado com o material de base à temperatura de 0 °C, embora com presença do microconstituinte A-M.

Palavras-chave

Soldagem circunferencial; API 5L X80; GMAW; FCAW-G; Ensaio Charpy V.

Abstract

Richard Zacarías Sanz Durand; Ivani de Souza Bott. **Evaluation of the Microstructural and Mechanical Properties of the Girth Welding of an API 5L X80 Steel Tube by Semi-automatic Welding Processes with Gas Shielding.** Rio de Janeiro, 2007. 143p. Master's Dissertation – Departament of Materials Science and Metallurgy, Pontifícia Universidade Católica do Rio de Janeiro.

The present work evaluates the changes in the microstructural and mechanical properties of an API 5L X80 steel tube due to the influence of heat input exerted during a welding procedure that used two sequential welding processes. The tubes were manufactured using the UOE process, from steel that was produced by controlled rolling without accelerated cooling. The welding was carried out on a 3/4" thick and 20" nominal diameter pipe, while it was held in a horizontal position in order to simulate field conditions, using a controlled short circuit GMAW process with CO₂ (100%) gas shielding for the root pass and a flux cored arc welding process with $Ar-CO_2$ (80% – 20%) gas shielding for the other passes. The evaluation of the mechanical properties was done by means of mechanical tests according to the API 1104 standard, in addition to the Vickers microhardness and Charpy V-notch tests. The changes in the microstructure of the Heat Affected Zone (HAZ) and the welded metal were evaluated by means of scanning electronic microscopy (SEM) and optical microscopy. The mechanical evaluation was unsatisfactory according to the API 1104 standard, while the tensile and Nick-Break test results were acceptable. The side bend test showed a crack in a specimen that exceeded the maximum acceptable value. The Vickers microhardness results were acceptable and the Charpy V-notch result, according to the DNV-OS-F101 standard, at a temperature of 0 °C, was unsatisfactory in the weld metal region of the over cap. The HAZ region showed greater energy of impact absorption compared to the base metal, at a temperature of 0 °C, even with existence of the microconstituent M-A.

Keywords

Girth welding; API 5L X80; GMAW; FCAW-G; Charpy V notch test.

Sumário

1 . Introdução	18
2 .Revisão Bibliográfica	20
2.1. A soldagem por fusão	
2.1.1. O arco elétrico	20
2.2. Transferência metálica	21
2.2.1. Mecanismo de destacamento da gota metálica	21
2.2.2. Modos de transferência metálica	23
2.3. O aporte de calor	24
2.4. A poça de fusão	25
2.4.1. Mecanismos de agitação da poça de fusão	26
2.4.1.1. Tensão superficial	26
2.4.1.2. Força eletromagnética	26
2.4.1.3. Força de Flutuação	26
2.4.1.4. Força de arraste aerodinâmico	27
2.4.1.5. Força de impacto da gota metálica	27
2.4.2. Vaporização a partir da superfície da poça de fusão	27
2.4.3. Reações gás-metal de solda	28
2.5. Solidificação da poça de fusão	28
2.6. A Zona Termicamente Afetada	30
2.7. A soldagem multipasse	32
2.8. Os aços de alta resistência e baixa liga (ARBL)	32
2.8.1. O aço para tubos API 5L X80	33
2.8.2. A fabricação do tubo API 5L X80	33
2.8.2.1. A laminação controlada	33
2.8.2.2. A conformação do tubo	34
2.8.3. A Soldabilidade do aço de alta resistência e baixa liga	35
2.8.3.1. Cálculo de carbono equivalente (CE)	35
2.8.3.2. O tempo de resfriamento, $\Delta t_{8/5}$	36
2.9. Efeito Microestrutural nas Propriedades mecânicas	38
2.9.1. O constituinte A-M (Austenita-Martensita)	38

2.9.2. A tenacidade à fratura	39
2.9.2.1. A superfície da fratura	40
2.9.3. A dureza da junta soldada	42
2.10. Soldagem de Dutos	43
2.10.1. A soldagem mecanizada e semi-automática	43
2.11. Processos de soldagem por arco elétrico	47
2.11.1. Os gases de proteção	47
2.11.2. Processo de soldagem com arame tubular	48
2.11.2.1. Vantagens e desvantagens	48
2.11.2.2. Os consumíveis	49
2.11.2.3. Efeito dos parâmetros de soldagem	50
2.11.2.4. Aplicação	51
2.11.3. Processo de soldagem MIG/MAG	51
2.11.3.1. Vantagens e desvantagens	51
2.11.3.2. Processo de soldagem STT ®	52
3 . Material e Procedimento Experimental	56
3.1. Materiais	56
3.2. Procedimento Experimental	58
3.2.1. Procedimento de Soldagem	58
3.2.2. Execução da Soldagem	61
3.2.2.1. Etapa de verificação e preparação da junta	61
3.2.2.2. Etapa de acompanhamento da soldagem	63
3.2.2.3. Etapa após soldagem – Mapeamentos de defeitos	66
3.3. Amostragem para avaliação da Junta Soldada	66
3.3.1. Codificação	66
3.3.2. Ensaios Mecânicos	68
3.3.2.1. Ensaio de tração, segundo Norma API 1104	68
3.3.2.2. Ensaio de dobramento lateral, segundo Norma API 1104	69
3.3.2.3. Ensaio de Nick-Break, segundo Norma API 1104	69
3.3.2.4. Ensaio de Impacto Charpy V	70
3.3.2.5. Ensaio de microdureza Vickers (HV)	71
3.3.3. Extração dos Corpos-de-prova	73
3.3.3.1. Corpos-de-prova para os ensaios segundo a Norma API 1104	73
3.3.3.2. Corpos-de-prova para o ensaio de impacto Charpy V	75
3.3.4. Análise Fractográfíca	77
3.3.5. Ensaios Metalográficos	78

3.3.5.1. Análise Macrográfica	78
3.3.5.2. Análise Micrográfico	79
3.3.6. Análise Química	82
4. Resultados	83
4.1. Mapeamento de descontinuidades não aceitáveis.	83
4.2. Cálculos do Aporte de Calor e Tempo de resfriamento	84
4.3. Macrografia da Junta Soldada	89
4.4. Análise química	94
4.5. Ensaios Mecânicos	95
4.5.1. Ensaio de tração	95
4.5.2. Ensaio de dobramento	97
4.5.3. Ensaio de Nick- Break.	99
4.5.4. Ensaio de Microdureza Vickers.	100
4.5.5. Ensaio de Impacto Charpy V	103
4.5.5.1. Influencia da posição de soldagem	107
4.5.6. Fractrografia dos CPs de Impacto Charpy V após ensaio	109
4.5.6.1. Temperatura de ensaio 0 °C	109
4.5.6.2. Temperatura de ensaio -20 °C	109
4.5.6.3. Temperatura de ensaio -40 °C	110
4.5.6.4. Temperatura de ensaio -60 °C	110
4.5.6.5. Temperatura de ensaio -80 °C	111
4.6. Caracterização da Junta Soldada	117
4.6.1. Microestrutura da ZTA	117
4.6.2. Microestrutura do Metal de Solda	120
4.6.3. Caracterização do microconstituinte A-M	122
5 . Discussão	129
5.1. A Junta Soldada e as suas propriedades mecânicas.	129
5.2. Microestrutura da região do metal de base termicamente afetada, ZTA.	130
5.2.1. ZTA associada ao processo MAG-CCC	130
5.2.2. ZTA associada ao processo FCAW-G	130
5.3. Microestrutura da região do metal de solda	131
5.3.1. Metal de solda associado ao processo MAG-CCC	132
5.3.2. Metal de solda associado ao processo FCAW-G	132
5.4. Energia de impacto da junta soldada	133
5.4.1. Energia de impacto associada à ZTA	133

5.4.2. Energia de impacto associada à LF	134
5.4.3. Energia de Impacto associado ao metal de solda na raiz	134
5.4.4. Energia de Impacto associado ao MS do topo	135
6 . Conclusões	136
6.1. Sugestões para a execução da soldagem	137
6.2. Sugestões para trabalhos futuros	137
7. Referências bibliográficas	138

Lista de figuras

Figura 1. Tipos básicos de transferência metálica, a) Transferência por curto-	
circuito, b) Transferência globular, e c) Transferência goticular. Adaptado de	
Hernández [7].	23
Figura 2. Seqüência de transferência por arco pulsado. Adaptado de	
Hernandez [7]	24
Figura 3. Fatores que controlam os modos de crescimento durante a	
solidificação dos metais líquidos [25].	29
Figura 4. Temperaturas e estruturas da ZAT. Adaptado de Fosca [33].	30
Figura 5. Processo de laminação controlada [4]	34
Figura 6. Processo de conformação UOE, a) conformação em U, b) Etapas	
de conformação em O. Posteriormente o tubo já soldado é expandido (E) por	
pressão hidráulica.	35
Figura 7. Fatores de correção para a determinação do tempo de resfriamento,	J
Δt _{8/5} , em função do tipo da junta. [37]	37
Figura 8. Microcavidades na superfície da fratura, imagem obtida por MEV	40
Figura 9. Aspecto das facetas de clivagem com "rios" característicos que	
indicam o sentido local de propagação da fratura, imagem obtida por MEV	41
Figura 10. Fratura intergranular, imagem obtida por MEV [49].	41
Figura 11. Faixa de aporte de calor no processo por eletrodo revestido que	
permite obter uma junta soldada integra em um aço API 5L X80. [55]	45
Figura 12. Faixa de aporte de calor no processo GMAW que permite obter	
uma junta soldada integra em um aço API 5L X80. [55]	46
Figura 13. Efeito do aporte de calor na formação de ferrita acicular. [55]	46
Figura 14. Seção transversal do arame tubular, a) arame sem costura e b)	
arame com fechamento de topo, c) arame com fechamento sobreposto, e d)	
arame com fechamento por dobra simples. Adaptado de Dilthey [15].	49
Figura 15. Gráfica Tensão – Corrente em função do tempo para o processo	
STT®. [65]	53
Figura 16. Gráficos de acompanhamento do controle da corrente pela fonte	
STT®[58].	54
Figura 17. a) Geometria da juntas, e b) distribuição de passes por camada	
de soldagem, dimensões em milímetros.	60

Figura 18. Calibre com finalidade múltipla para medições em soldagem.	61
Figura 19. Localização dos elementos de fixação na preparação da junta a	
soldar	62
Figura 20. Posicionamento e pontos de soldagem para o elemento de fixação.	63
Figura 21. Tubo na posição horizontal fixo.	64
Figura 22. Seqüência de soldagem para todos os passes. Onde T: Topo,	
SC: Sobrecabeça. 1E: primeiro passe esquerdo, 1D: primeiro passe direito,	
2E segundo passe esquerdo, e 2D: segundo passe direito.	64
Figura 23. Painéis de controle de amperagem e voltagem marcados em	
retângulos amarelos, a) Máquina de soldagem Invertec STT II, amperagem	
de pico e de base b) Alimentador de arame LN-742, voltagem para o processo)
STT e c) Máquina de soldagem Invertec V350- Pro, amperagem e voltagem.	65
Figura 24. Distribuição de pontos de controle dos parâmetros de soldagem	
para cada passe.	65
Figura 25. Codificação dos ensaios mecânicos.	67
Figura 26. Codificação dos ensaios de Impacto Charpy V.	67
Figura 27. Posicionamento do corpo-de-prova no ensaio de Tração.	68
Figura 28. Ensaio de dobramento lateral.	69
Figura 29. Dimensões do corpo-de-prova Charpy V segundo a norma ASTM	
A370 [51]	71
Figura 30. Posição do corpo-de-prova Charpy V nos apoios da máquina de	
impacto.	71
Figura 31. Distribuição do perfil de ponto de dureza na junta soldada,	
dimensões em milímetros.	72
Figura 32. Ampliação da Fig. 31, detalhando a correlação numérica da	
localização de cada ponto de dureza.	72
Figura 33. Localização dos corpos de prova para os ensaios de qualificação	
de procedimento exigidos pela norma API 1104 [66], os corpos de prova para	
Macrografía e dureza ao lado dos corpos de prova API 1104 [66].	73
Figura 34. Dimensões do corpo-de-prova para ensaio de tração segundo a	
norma API 1104 [66]	74
Figura 35. Dimensões do corpo-de-prova para ensaio de dobramento lateral	
segundo a norma API 1104 [66]	74
Figura 36. Dimensões do CP para ensaio de ruptura por entalhe segundo a	
norma API 1104 [66]	74
Figura 37. Posição do corpo-de-prova Charpy V para o material de base.	75
Figura 38. Localização dos corpos de prova Charpy V extraídos na junta	

3
7
3
9
C
С
1
2
3
3
7
1
2
4
5
3
3
3
9

junta soldada, e b) eixo inferior da junta soldada.	102
Figura 58. Valores médios resultantes do ensaio de impacto Charpy V.	107
Figura 59. Gráfico da variação da energia de impacto para as diferentes	
regiões e posições de soldagem para a temperatura de 0 °C.	108
Figura 60. Imagens das superfícies de fraturas para as diferentes regiões a	
0 °C com aumento de 1000x, obtidas por MEV.	112
Figura 61. Imagens das superfícies de fraturas para as diferentes regiões a	
-20 °C com aumento de 1000x, obtidas por MEV.	113
Figura 62. Imagens das superfícies de fraturas para as diferentes regiões a	
-40 °C com aumento de 1000x e 2000X, obtidas por MEV.	114
Figura 63. Imagens das superfícies de fraturas para as diferentes regiões a	
-60 °C com aumento de 1000x, obtidas por MEV.	115
Figura 64. Imagens das superfícies de fraturas para as diferentes regiões a	
-80 °C com aumento de 1000x e 2000x, obtidas por MEV.	116
Figura 65. Microestrutura das ZTAs associadas ao passe de raiz (a,c,e) e	
ao passe quente (b,d,f). Todas as imagens com aumento de 500x.	119
Figura 66. Microestrutura das ZTAs associadas à camada de enchimento	
(a, c, e) e à camada de acabamento (b,d,f). Todas as imagens foram	
obtidas com aumento de 500x.	120
Figura 67. Mapa microestrutura do Metal de solda obtido por MO. Todas as	
imagens foram obtidas com aumento de 500x.	121
Figura 68. Microestrutura do material de base, por MO, aumento de 500x.	122
Figura 69. Gráfico de relação entre a fração percentual do constituinte A-M	
e o Aporte de calor na ZTA associada a cada passe de soldagem próximo à	
LF, para o aço API 5L X80.	124
Figura 70. Localização das regiões da obtenção de imagens para a	
caracterização por médio do MEV.	124
Figura 71. Mapa das regiões da ZTA associados ao passes de soldagem,	
mediante o uso do MEV, todas as imagens com aumento de 3000x.	127
Figura 72. Mapa da microestrutura do material de solda, obtido mediante o	
MEV, todas as imagens com aumento de 3000x.	128
Figura 73. Microestrutura do material de base, obtido mediante o MEV,	
imagem com aumento de 3000x.	128

Lista de tabelas

Tabela 1. Forças atuantes na transferência metálica.	22
Tabela 2. Eficiências térmicas de diferentes processos de soldagem	25
Tabela 3. Procedimento típico de soldagem circunferencial por GMAW	
mecanizado de um duto X80 [55]	44
Tabela 4. Composição química do metal de base (% em peso)	56
Tabela 5. Propriedades Mecânicas do metal de base do tubo, segundo o	
fabricante.	56
Tabela 6. Composição química do material de aporte como soldado, segundo	
fabricante.	57
Tabela 7. Propriedades mecânicas do metal de aporte, como soldado	
segundo o fabricante.	57
Tabela 8. Condições de soldagem para a obtenção das propriedades	
mecânicas do metal de aporte, segundo fabricante.	57
Tabela 9. Procedimentos de soldagem envolvidos em cada uma das EPSs.	58
Tabela 10. Especificação do Procedimento de Soldagem X80-4	59
Tabela 11. Tipo, número e dimensão dos corpos de prova para os ensaios	
de qualificação do procedimento de soldagem.	73
Tabela 12. Número de corpos de prova ensaiados por região para cada	
temperatura de avaliação.	75
Tabela 13. Distribuição de ensaios por JS	84
Tabela 14. Aporte de Calor por junta soldada.	87
Tabela 15. Tempo de resfriamento por junta soldada.	87
Tabela 16. Aportes de calor por ponto de controle ao longo da circunferência	
da JS-02.	88
Tabela 17. Aportes de calor por ponto de controle ao longo da circunferência	
da JS-04.	88
Tabela 18. Aportes de calor por ponto de controle ao longo da circunferência	
da JS-06.	89
Tabela 19. Dimensões geométricas da JS-06, dimensões em milímetros.	90
Tabela 20. Composição química do metal de solda.	94
Tabela 21. Resultados dos ensaios de tração.	96
Tabela 22. Resultados do ensaio de dobramento.	97
Tabela 23. Resultados do ensaio de ruptura por entalhe.	99

Tabela 24. Pontos obtidos para as diferentes regiões no eixo superior,	
valores de microdureza HV.	101
Tabela 25. Pontos obtidos para as diferentes regiões no eixo inferior,	
valores de microdureza HV.	101
Tabela 26. Zonas de propagação da fratura inferidas nas medições sobre as	
macrografías da JS-06. Regiões de LF e ZTA. Valores em fração.	103
Tabela 27. Zonas de propagação da fratura inferidas nas medições sobre as	
macrografías da JS-06. Regiões de Raiz e Topo. Valores em fração.	103
Tabela 28. Valores médios dos ensaios de impacto Charpy V.	106
Tabela 29. Valores médios resultantes do ensaio de impacto Charpy V.	107
Tabela 30. Superfície de fratura para cada CP do ensaio Charpy V.	111
Tabela 31. Quantificação do constituinte A-M por regiões para a ZTA, MS e	
MB, em porcentagem.	123
Tabela 32. Tabela de associação entre os aportes de calor para cada região	
e a porcentagem de constituinte A-M quantificado para a região da ZTA	
próxima à linha fusão associado a cada passe de soldagem.	123